M
Misafir
Forum Okuru
İplik Eğirme Yöntemleri Hakkında Temel Bilgiler
mikroner nedir iplik eğirme yöntemleri pamuğun ipliğe dönüşü iplik üretim yöntemleri mikroner
İplik Eğirme Yöntemleri Hakkında Temel Bilgiler
60’lı yılların sonuna kadar hemen hemen bütün kesikli lif iplikleri Ring iplik makinelerinde üretilmekteydi ve Ring iplikçiliği kesikli lif ipliği üretimindeki tek evrensel yöntem olarak tanımlanıyordu. 70’li yılların başında üretime katılan Rotor iplik makineleri günden güne kendini yenilemiş ve son yıllarda da büyük bir üretim potansiyeli oluşturma durumuna gelmiştir. Ancak ince numaralardaki Rotor ipliklerinin üretiminde teknik ve ekonomik açıdan bir takım sorunlarla karşılaşılmaktadır. Son yıllarda Rotor devrinin bir hayli arttırılabilmesi ince ipliklerin üretiminde ekonomik olarak çalışabilme olanakları doğmuştur. Bu arada paralel liflerin etrafına filament ipliklerin sarıldığı sargılı eğirme yöntemi gelişmiştir. Fakat bu teknik ile daha çok kalın ipliklerin üretimi yapılabilmektedir. Daha sonraki yıllarda Hava-Jet ve Friksiyon eğirme teknikleri gelişmiştir. Hava-Jet ve Friksiyon eğirme makineleri çok yüksek üretim hızına sahiptir. Fakat iplik özellikleri ve maliyetler açısından kullanımları sınırlıdır.
Yeni eğirme yöntemlerinin kullanılması sonucunda üretilen iplikler bazı alanlarda çok başarılı olarak kullanılabilmelerine rağmen bazı alanlarda olumlu sonuçlar alınmamaktadır. Dokuma ve örme kumaşların nitelikleri bu iplikler kullanıldığında bir miktar farklılık göstermektedir.
Yeni eğirme yöntemlerinden günümüzde en çok kullanılan Rotor iplikçiliğinde makine ve materyal özelliklerinin iyi bir şekilde seçilmesi ile Ring iplikleri kadar iyi özelliklere sahip iplikler elde etmek mümkündür 1.
Tablo 1 : Eğirme tiplerine göre iplik üretim hızları 1.
Eğirme tipi İplik numarası (Ne) İplik üretim hızı (m/min)
Bilezikli Eğirme 3-98 25
Dref 2 0.18-15 280
Dref 3 3.5-18 300
Air-jet 15-59 120-130
PLY fiL 23.6-70 x 2 (tex) 150-250
1.2. İplik Eğirme Yöntemlerinde Hammadde Seçimi ve Önemi
Yeni iplik eğirme sistemlerinin Ring iplik eğirme sistemiyle karşılaştırılmaları sonucu ortaya çıkan teknoloji ve iplik özellikleri bakımından farkları olması nedeniyle eğirme performansının geliştirilmesi için uygun materyalin seçilmesi ve lif özelliklerinin etkilerinin iyi bilinmesi gerekir. Yeni iplikçilik yöntemlerinde kullanılacak hammaddelerin nitelikleri önemlidir. Arzu edilen kalitede bir iplik üretimi gerçekleştirebilmek için uygun nitelikte hammadde seçilmelidir 1.
1.2.1. Lif Parametreleri
Yeni eğirme sistemleri için üzerinde durulan lif özellikleri ve bunların önem sıraları Rotor, Hava-Jet ve Friksiyon eğirme sistemleri için aşağıda verilmiştir :
Tablo 2 : İplikçilik sistemlerinde lif parametrelerinin karşılaştırılması 1
Rotor Eğirme Hava-Jetli Eğirme Friksiyon Eğirme
Lif mukavemeti Lif inceliği Lif sürtünmesi
Lif inceliği Temizlik Lif mukavemeti
Lif uzunluğu ve üniformitesi Lif mukavemeti Lif inceliği
Temizlik Lif uzunluğu ve üniformitesi Lif uzunluğu ve üniformitesi
Lif sürtünmesi Temizlik
1.2.1.1. Mukavemet
Lif mukavemeti iplik mukavemetine doğrudan etki yapan bir faktördür. Sağlam lifler sağlam ipliklerin üretimini sağladığı gibi aynı zamanda yüksek hızlı eğirme ve dokumada kopuş seviyesinin kabul edilebilir bir düzeyde kalmasını da sağlarlar. Yapay lif üreticileri de yüksek mukavemete sahip liflerin üretimi konusunda hızla çalışmalarını ilerletmektedirler. Pamuk liflerinin mukavemetlerinin iki kat üzerine çıkan yapay lifler üretilebilmektedir 1.
Tablo 3: Lif mukavemetinin iplik mukavemetine etkisi (Ne22 pamuk ipliği, e:4.8)1
1.2.1.2. İncelik
Rotor eğirme, Hava-Jetli eğirme ve Friksiyon iplikçiliğinde lif inceliği hem eğirme sınırını ( eğrilebilecek en ince iplik) hem de prodüktivite ve kumaş tutumuna etki eden büküm seviyesini belirlemektedir. Ring iplik eğirmede ipliğe büküm belli bir gerginlik altında verilmektedir. Buna karşılık Rotor iplik eğirme tekniğinde ipliğe bükümün verildiği noktada gerginlik çok düşük düzeydedir. Bu nedenle Rotor eğirmede iplik kesitine giren lif sayısı, iplik çekim kuvvetine büküm aktarma noktasında hiçbir müdahale yapılmaması yüzünden çok önemlidir. Kesitinde ne kadar çok lif olursa büküm o kadar iyi aktarılır. Bu yüzden rotor eğirmede lif inceliği önemlidir. Düşük mikroner değerine sahip pamuk lifleri yetiştirilmesi iplik incelik limitlerinin genişletilmesi bakımından önemlidir. Ancak düşük mikroner değerine sahip pamukların yüksek oranda olgunlaşmamış lif içerebilecekleri göz önüne alınarak seçimin dikkatli yapılması gerekir. Çünkü olgun olmayan lifler çeşitli sorunlara yol açabilir.
Pamuğun mikroner değeri düştükçe başka bir deyişle lif inceldikçe iplik kesitinde yer alabilecek liflerin sayısı artmaktadır. Bu artışa bağlı olarak iplik mukavemetinde herhangi bir azalma olmaksızın iplik bükümü azaltılabilmektedir. Bükümün azaltılabilmesi de prodüktivitenin artması anlamına gelir. Düşük büküm miktarı prodüktiviteyi arttırmakla kalmayıp ipliğin yumuşak olmasını da sağlar. Bu birçok dokuma kumaş türünde ve örme kumaşların hepsinde aranılan bir özelliktir.
Yapay lif üreticileri ince liflerin önemini benimsemiş olup bu tür liflerin ticari olarak üretimlerine başlanmıştır. Çok ince lif denildiğinde numarası 1dtex’ten daha ince olan lifler akla gelir. Bu liflerin numaraları 0.4-0.9dtex arasında olup teknik olanaklar bakımından 0.1dtex’in altında liflerin de üretimi mümkündür. Ancak 0.1dtex’in altındaki lifler deriye benzer yüksek kaliteli kumaşların üretiminde kullanılır. Bugün polyester lif üretiminde 1.7dtex’ten 1.2-1.3dtex inceliğe kadar kayma eğilimi vardır. Bu da yaklaşık olarak 3 mikroner incelikteki pamuğa karşılık gelmektedir. Hatta 2.5 mikronere karşılık gelecek liflerin de üretimi söz konusudur. Yapay liflerin piyasa ihtiyaçlarına uygun olarak üretilmesi kolay olduğu için yeni teknolojilerde yapay liflerin daha büyük çapta kullanılabileceklerini söylemek mümkündür. Pamuk lif inceliğinin 2.5-3 mikroner olması bir hayli zordur. Mevcut koşullarda 3.5-3.7 mikroner değerler elde etmek mümkündür. Ancak pamuğun gelecek yıllarda yapay liflerle rekabet edebilmesi açısından türlerinin ihtiyaca uygun bir şekilde ıslah edilmesi bir zorunluluk olarak görülmektedir 1.
1.2.1.3. Uzunluk
En iyi sonuçları alabilmek için uygun lif inceliği ve mukavemetinin yanısıra liflerin uzunluklarının ortalama 1” civarında olması ve iyi bir üniformite oranı gerekmektedir. Çok kısa olan lifler iplik mukavemetini azaltmakta iplik düzgünsüzlüğünü (%U) ve hata sayısını arttırmakta, eğirme performansını düşürmektedir.
Bu nedenle kullanılacak materyalin lif uzunluk dağılışı ve özellikle kısa lif oranı bilinmelidir. Kalın ipliklerde lif uzunluğu iplik kalitesine daha az bir katkı yaparken ince numaralara gelindiğinde lif uzunluğunun önemi bir hayli artmaktadır. Bu arada önemli olan bir husus lif harmanı içinde yüksek oranda kısa liflerin bulunması halinde büküm miktarının arttırılmasının gerekebileceği ve dolayısıyla eğirme maliyetlerinde bir miktar yükselmenin meydana gelebileceğidir 1.
1.2.1.4.Temizlik
Pamuk içersine karışan daha fazla miktardaki yaprak, çekirdek ve kabuk parçacıkları vb. maddelerin temizlenmesi için ilave temizleme makineleri gerekli olabilmektedir. Bu işlem yapılmadığı takdirde, özellikle yüksek hızlarla çalışırken sık sık kopuşlar meydana gelmektedir ve bu nedenle maliyetler yükselir.
Hava-Jetli eğirme ve Friksiyon eğirme sistemlerinde makine randımanlarının iyi olması açısından mümkün olduğu kadar az yabancı madde içeren materyale gereksinim duyulur. Organik veya inorganik yapılı mikro tozların makine parçaları üzerinde aşındırıcı etkileri vardır. Özellikle yüksek hızla çalışan kısımlarda ve iplik yüzey baskılarının yüksek olduğu yerlerde elemanların ömürleri azalır. Aşınmış rotor, açma silindiri, iplik çekme kanalı gibi elemanlar da iplik kalitesinde düşmelere sebep olurlar. Materyal içindeki mikro tozların azaltılması eğirme elemanlarının ömürlerinin azaltılması açısından büyük önem taşımaktadır1.
1.2.1.5.Lif Parlaklığı
Parlaklık doğal ve yapay liflerin değerini arttırır. İpek, tiftik ve bazı parlak yünlerin değerinin her zaman yüksek oluşunda bu özelliğin büyük etkisi vardır.
Pamuklarda parlaklık çeşitli durumlara göre değişir. Parlak pamuklar ipeği andırır. İpeği andıran pamuklar iplikçiler tarafından tercih edilir. Bir pamukta parlaklık lif yüzeyine düşen ışığın çeşitli şekilde yansıması ile oluşur 1.
2.OPEN END-ROTOR EĞİRME SİSTEMİ
Açık uç eğirme prensibine dayanan bu eğirme sisteminde prensip olarak tek tek açılmış lifler, iplik oluşturmak üzere birikim yoluyla açık iplik ucuna bağlanmaktadır (Şekil 1 ve 2). Sistemin esası lif kütlesinin rotor hareketiyle taşınıp, açık uca aktarılması ve bükümlü iplik yapısının elde edilmesidir 2.
Open-end rotor iplikçilik sistemi öncelikle pamuk, viskon, polyester ve akrilik lifler kullanılmak üzere kalın iplik eldesine uygundur. Fakat her geçen gün de kullanılabilecek lif tipi sayısı artmakta ve eğrilebilecek iplik numara aralığı genişlemektedir. İplik üretimi çekim, büküm ve sarım proseslerini içeren bölümlerden oluşur 2.
Rotor iplik makinelerinde çalışma esnasında rotor içinde bir miktar vakum oluşturulur. Band makineye besleme silindirleriyle yavaş yavaş verilir. İğneli veya 🙂🙂🙂🙂lik tarak garnitürüne sahip açma silindiri ise gelen liflerin uçlarını tarar. Eğer lifler iyice açılmazlarsa, rotora sevk edildikten sonra kötü kaliteli iplik elde edilir. Makine imalatını gerçekleştiren firmalarca bazen açıcının yanına pislik (döküntü) temizleme kutusu da ilave edilir 1.
Açma silindiri ile rotor arasında yer alan lif iletim kanalı hava akışını arttırıp lifleri bir ölçüde yönlendirip, düzeltir. İdeal olarak istenen liflerin iletim kanalı içinde ve ucuna değecek şekilde sıralar halinde rotora girmeleridir.
Lifler rotora girerken, rotorun çevresel hızı havanın hızından yüksek olduğu için, lifler bir miktar çekilerek yönlendirilirler. Lifler rotor içindeki merkezkaç kuvvetinin etkisiyle rotor içersinde toplanan diğer lif tabakalarına katılırlar.
Mevcut olan bir iplik çıkış tüpünden içeri sokulur ve rotor içindeki hava döndüğünden iplik ucu da dönmeye başlar. Merkezkaç kuvveti de ipliği rotorun içersine doğru iterek lif tutamına değmesini sağlar. Bu gerçekleşir gerçekleşmez iplik çekilir ve üretim başlamış olur. İplik kolunun her dönüşü ipliğe çıkış tüpünde bir büküm verir ve verilen bükümün bir kısmı geriye iplik koluna akarak rotor yüzeyine kadar gider. Üretilen iplik bobin halinde sarılır 1.
Şekil 1 : rotor iplik eğirme makinesi 17.
Şekil 2 : Open-End iplik eğirmenin genel prensibi 17.
Rotor eğirme metodunun bilezikli eğirme metodundan en büyük farkı iplik eğrilirken elyafın beslenmesinin kesintili oluşudur. Beslemedeki bu kesinti elyafın her birisini diğerinden ayırmak suretiyle, birbirleriyle temas halinde bile olmamalarını sağlayacak şekilde belirli bir bölgede elyafın çok yüksek bir hızla hareket etmesini sağlayarak elde etmektir. Böylece iplik ucunu döndürerek, ipliğe gerçek bir büküm vermek mümkün olmaktadır ki bu da bir masurayı döndürürken tüketilen enerji miktarından çok daha az enerji tüketimine ihtiyaç olmasını sağlamaktadır. Rotorun her devri iplikte bir devir meydana getirmektedir. Böylece 60 000-100 000 r/min rotor hızları ile çalışabilmekte ve yüksek verim hızlarına çıkılabilmektedir. Ayrıca elyaf beslemek için cer şeritleri kullanılabilmekte ve iplik büyük çaplı bobinlere doğrudan doğruya sarıldığından, normal koşullarda tekrar sarılmaya gerek olmamaktadır. Rotor iplik eğirme kaba iplik üretiminde daha ekonomik olmakla birlikte 20tex’e kadar olan ince numaralarda da bilezikli iplik eğirme metodundan daha ekonomiktir. Diğer yandan rotor iplik eğirmenin ana prensibi olan elyafın serbestçe uçuşmakta olması, elyafın oryantasyonunun korunması ve kontrol edilmesini çok zorlaştırmaktadır. Bu sırada elyaf büyük oranda oryantasyonunu kaybetmektedir. Rotora girdikleri zaman bu kayıp bir miktar düzelmekle birlikte, rotor ipliklerindeki elyaf oryantasyonu hiçbir zaman bilezikli sistemle üretilen iplikler kadar iyi değildir 3.
2.1.OPEN END-ROTOR İpliklerinin Genel Özellikleri
Open-end rotor iplikleri ile ring iplikleri arasında birçok farklılıklar vardır. ring iplikleri ile karşılaştırıldıkları zaman, Open-end rotor iplikleri bazı özelliklerinin daha iyi olmasına rağmen bazı özelliklerinin ise kötü olduğu görülmektedir.
Open-end rotor ipliği bir iç çekirdek ve bir dış tabakadan meydana gelmiştir. “Sarılmış lifler” denilen kısım, dış tabakada bulunup çekirdeği çevresi boyunca sararlar ve ring ipliği ile Open-end rotor iplik özellikleri arasında görülen ana farklılıklara sebep olurlar. Bunlar kısaca şu şekildedir :
Open - end iplik mukavemeti ring iplik mukavemetinden daha düşüktür. Genel olarak Open-end rotor ipliklerinin mukavemeti bunlara eşdeğer ring ipliklerinin %30-40’ı kadardır. Diğer yandan Open-end rotor iplikleri %10 daha yüksek kopma uzamasına sahiptirler. Open-end rotor ipliklerinin düzgünlüğü rotor içindeki dublaj nedeniyle ring ipliklerinden %10-20 daha iyidir. Ancak ön iplikhanede işlemlerin kısaltılmış olması nedeniyle bu ipliklerde orta ve kısa aralıklı düzgünsüzlüklere rastlanabilir.
Open-end rotor ipliklerinde tüylenme, ring ipliğine göre %20-40 daha azdır. Tutum açısından Open-end rotor iplikleri ring ipliklerine göre daha serttir.
Open-end rotor iplikleriyle yapılan sürtünme testleri, bu ipliklerin karde ring ipliklerine nazaran daha yüksek aşınma dayanımına sahip olduğunu göstermiştir. Open-end rotor iplikleri, ring ipliklerinden daha düşük elastisite modülüne ve eğirme rijiditesine sahiptirler. Özgül hacmi ring ipliklerininkinden %10 civarında daha büyüktür. Bu özelliği ipliğin iyi bir kompakt yapısının olmaması ile açıklanabilir. Daha yüksek özgül hacim: daha iyi bir örtücülük, daha iyi ısı tutuculuk, daha çok boyarmadde ve haşıl alma imkanı sağlamaktadır 2.
3. HAVA-JETLİ (AİR-JET) EĞİRME SİSTEM
Hava-jet eğirme sistemi yeni sayılabilecek iplik üretim metotlarından birisidir. Japon Murata, Toyota ve Hawa gibi firmaların Hava-Jetli iplik eğirme makineleri ITMA’83 te ilgi çekmiş, çeşitli ülkeler tarafından benimsenerek günümüzde kullanılmaya başlanan yeni eğirme sistemi olarak karşımıza çıkmaya başlamıştır.
Hava-jeti ipliği ortada lif demetlerinden oluşan çekirdek kısım ile bu çekirdek kısmı saran liflerden oluşmuş iki katlı bir ipliktir. Temel olarak yalancı bükümlü oldukları söylenebilir 4.
3.1. HAVA-JETLİ İplik Eğirme Sisteminde Kullanılan Lifler
Hava-jet iplikçilik sistemi, 120-150 mm uzunluktaki elyaftan iplik yapılabilen bir sistem olup, iyi özellikte pamuk ve sentetik elyaf ile orta ve ince iplik üretimlerinde uygundur. İçinde yüksek oranda kısa elyaf bulunan karde ipliklerini ve çok ince iplikleri üretmeye uygun olmayıp bu alanda kullanılmamaktadır. Bu sistemle elde edilen ipliklerin numara aralığı (Ne15-60) ring iplik sistemininki kadar geniş değildir 4.
Hava-jet eğirme sisteminde %100 sentetik lifler, sentetik lif karışımları veya sentetik liflerin pamukla olan karışımları kullanılır. Orta uzunluktaki liflerden iplik üretimi söz konusudur. İplik kesitindeki lif adedi minimum 80’dir 5. Hava-jetin de kullanılacak liflerin en az 38mm olması tavsiye edilmektedir zira daha kısa lifler hava akımı şiddeti nedeniyle kontrol edilememektedir 5.
İyi bir Hava-jeti ipliğinde lif işlenebilirliği, lif sürtünmesi ve lif temizliği büyük önem taşır. Hava-jeti yönteminde kullanılan liflerin en önemli özelliği mukavemetli olmalarıdır. Lif mukavemeti iplik mukavemetine etki ettiğinden liflerin mukavemetinin belli bir dereceden az olmaması gerekir.
Hava-jeti ipliğinde, iyi bir lif sargısının oluşabilmesi için iyi bir incelik ve uzunluk homojenliğinin olması gerekir. Pamuk lifiyle çalışmak oldukça zordur. Ancak belirli ştapelde taranmış penye pamuğu ile çalışmak mümkün olmaktadır. %100 polyester, %100 akrilik, % 100 viskon, akrilik/pamuk, ve polyester/viskon lifleri sistemde rahatlıkla işlenebilmektedir. Bunların yanında uzun ştapelde çalışmak üzere geliştirilmiş hava-jetli makinelerde yün ve uzun ştapelli yapay lifleri de işlemek mümkündür 5.
3.2.HAVA-JETLİ İplik Eğirme Sisteminin Çalışma Prensibi
Beslenen cer bandı veya genel olarak bant kalitesinin her zaman için yüksek olması gerekir. Bunun nedeni hava-jetli sistemde kullanılan yüksek çekim hızıdır.
İyi kalitede bir hava-jet ipliği üç pasaj cer kullanımı ve en az %25 Uster düzgünsüzlüğündeki bant girişi ile sağlanır. Karışım ipliklerinin hazırlanmasında penye makinesi kullanılması tavsiye edilmektedir. Hava-jetli sistemde flayer, ring ve otomatik bobin işlemleri elimine edilmiş, iplik eldesi basitleştirilmiştir.
Şekil 4 te görüldüğü gibi makineye lifler bant formunda ve kovadan beslenir. Kovalar makine arkasında yanyana bulunmaktadır. Kovadan alınan bantlar apronlu bir çekim sahasında inceltildikten sonra iplik oluşumunun sağlandığı jetlere verilir. Jetlerde sürekli sağlanan hava akımı ile lifler döndürülmektedir. Oluşan iplik, çıkış silindirleri ile alınmakta, iplik temizleyicisinin önünden geçerek bobinlenmektedir. İplik temizleyicisi, iplikteki kalın yerleri çıkararak ipliği temizlemekte ve otomatik düğümleme aparatı ile iplik düğümlenmektedir 5.
Hava-jetli eğirme sisteminde MJS sisteminde olduğu gibi bir iş akışı sözkonusudur (Şekil 3).
HARMAN - HALLAÇ
TARAK
CER I
CER II
CER III
MURATA JET SİSTEM
BOBİN FORMUNDA ÇIKIŞ
Şekil 3: MJS sistemi akış şeması 5.
1-Kova
2-Şerit
3-Birinci jet
4-İkinci jet
7-Emme ünitesi
8- İplik temizleme ünitesi
9-Gerdirici
10-Bobin
Şekil 4 : Hava-Jet sisteminde iplik oluşumu 5.
3.3.HAVA-JETLİ İplik Eğirme Makinesinin Üretim Özellikleri
Diğer iplik üretim sistemlerinde mekanik olarak hareket ettirilen iğ, kopça, rotor, friksiyon silindiri vb. kütleler vardır. Bu sebeple devir sayıları, sevk hızları ve buna bağlı olarak sistemlerin prodüktivitesi sınırlıdır. Buna karşın hava-jetli sistemde bunların yerine yüksek hızda (ses hızına yaklaşan hızlarda ) hava akımı vardır. Buradan şu çıkmaktadır; bu tarzda büküm verme elemanları ile çok yüksek verim alınabilmektedir. Sadece genel bir ölçü vermek amacıyla ipliğin hava-jeti içinde 150 000- 200 000r/min hız ile dönmekte olduğu ifade edilebilir. İplik inceliğine, iplik bükümüne vb. gibi faktörlere bağlı olarak bu devir 100-200 m/min’lık bir iplik çıkış hızına karşılık gelmektedir. Bu oran ring iplik eğirme sistemi ile karşılaştırıldığında yaklaşık 10/1 oranı elde edilir. Basınçlı hava elde etmek hiçbir zaman ucuz olmamakla beraber bu sistemde özellikle ince iplikler kullanılır.
Hava-Jetli iplik üretim giderleri, ring ipliklerinden önemli derecede düşüktür. Hava-Jetli iplik eğirme yönteminin sınırları belli bir limit içindedir. İplikler yapay liflerden veya pamuk ile yapay lif karışımlarından üretilebilir. Fakat pamuk oranı %50’yi geçmemelidir. %100 pamuk yalnızca laboratuar şartlarında işlenebilmektedir. Bununla birlikte yüksek kaliteli lifler kullanılmalıdır 5.
3.4.HAVA-JETLİ Eğirme Sisteminin Avantajları
Hava-jetli iplik eğirme sisteminin avantajları şu şekilde sınıflandırılabilir:
-Yapay ve sentetik liflerde mukavemet artışı
-Enerji azalması
-İşçilik ve insan gücünün azalması
-Yer probleminin ortadan kalkması
-Maliyetin daha düşük olması 5
3.5.HAVA-JETLİ İplik Eğirme Yönteminde Elde Edilen İplik Özellikleri
Hava-jet ipliği, ring ipliğinden oldukça farklı bir yapıya sahiptir ( Şekil 5). İplik açık bir konumda son şeklini aldığı için, bütün lifler paralel değildir. Düzgün bir büküm işlemi yapılmadığı için büküm sayısı ring ipliğinde olduğu gibi isteğe göre seçilemez.
Büküm sayısı bir hayli yüksek olan hava-jetli ipliklerde doğru büküm tespiti için büküm açma ve ter yönde bükme metodu kullanılmalıdır. Birçok özellikleri, örneğin %CV, tüylenme ve kalın yerleri ring ipliğinden daha iyidir. İplik mukavemeti ring ipliğine nazaran %10-20 kadar düşük olmasına rağmen hava-jet ipliklerinde daha az zayıf noktalar vardır. Bu nedenle de dokuma sırasında daha yüksek randıman elde edilir 6.
Şekil 5 : Hava jetli eğirme yönteminde elde edilen iplik görünümü
3.6. HAVA-JETLİ Sistemde Elde Edilen İpliklerin Kullanım Alanları
Bu sistemde üretilen iplikler : dimi, saten, poplin, basmalık, iş elbiseliği, yatak çarşafı, T-shirtler, ceketlik kumaşlar vb. yapımında kullanılır. Hava-Jeti ipliklerinin, üretilen kumaşa verdikleri özellikler şöyledir :
İpliğin düzgünlüğü, poplin ve saten kumaşa daha düzgün bir görünüm verir.
Oxford gömlekleri gibi çözgü ve atkıda bir kayma veya esneme olmadığından, dokusu gevşek olan dokumalara daha uygun olmaktadır.
Pardösülük gibi çok sıkı dokunmuş kumaşlarda kullanıldığında iyi bir hava geçirgenliği sağlar ve böylelikle kullananın terlemesine engel olur.
Hava-Jetli ipliklerin serbest haldeyken kendi üzerinde bükülme eğiliminin az olması, örgü mamullerde rahatlıkla kullanılmasını sağlar. İpliklerin boncuklanma (pilling ) özellikleri de çok azdır. Böylece örgü yüzeylerde sorun çıkaran boncuklanma ortadan kalkmıştır.
Hava-Jet ipliği, yıkanmaya ve kullanmaya karşı çok iyi bir dayanım gösterir. Çift katlı olarak yapıldığında endüstriyel mamullerde dikiş ipliği olarak ta kullanılabilir 6.
4. FRİKSİYON İPLİK EĞİRME SİSTEMİ
Bu sistem, Dr. Ernst Fehrer / Avusturya firması tarafından geliştirilmiştir ve bu ismin kısaltması olan “Dref ,, ismi ile anılmaktadır.
Bu gün Dref sisteminde yaygın olarak iki imalat tipi mevcuttur; bunlar Dref 2 veDref3 tür. 166-4000 tex arasındaki kaba numaralara hitap eden Dref 2 sistemi 1973 yılında ve 33-150 tex kalınlıktaki ipliklerin imaline uygun, Dref 3sistemi ise 1978 yılında geliştirilmiştir7.
4.1. FRİKSİYON Eğirme Sisteminde Kullanılan Lifler
4.1.1. DREF 2 Sisteminde Kullanılan Lifler
Bütün sentetik lifler, poliakril, poliester, polipropilen, viskon vb. lifler kullanılır. Bu liflerin inceliği 1.7-17 dtex arasındadır.
Özel lifler : Aramid, poliakrilonitril, polivinilasetat, polivinilklorid, karbon, cam lifleri ve bunların karışımları;
Her tip telef, ıskarta pamuk, kalite dışı yün;
🙂🙂🙂🙂lik liflerden bükülmüş iplikler de ayrıca kullanılmaktadır 7.
4.1.2. DREF 3 Sisteminde Kullanılan Lifler
A-Çekirdek Kısmı İçin (Lif ve Filament Besleme)
Sentetik lifler (Polyester, Poliamid, Polipropilen, Viskon vb.)
Özel lifler (Aramid, Nomex)
Sentetik/Pamuk karışımları
🙂🙂🙂🙂l, Lastik vb.
B-Manto Kısmı İçin (Kesikli Elyaf)
Taranmış temiz pamuk
Çekirdek için kullanılan sentetik ve özel lifler (elyaf inceliği 0.6-3.3 dtex arası, standart elyaf uzunluğu ise 32-60mm dir) 8.
4.2.FRİKSİYON Eğirme Sisteminin Çalışma Prensibi
4.2.1. DREF 2 Eğirme Sisteminin Çalışma Prensibi
Dref 2 sistemi endüstride pek çok alanda kullanılmaktadır. Bu makinelerin her biri 6 eğirme ünitesinden oluşan, en fazla 8 kısım halinde imal edilmektedir (Şekil 6). Eğirme ünitesi giriş kısmı, açıcı silindir, büküm verme elemanları, iplik sarma kısmı ve vantilatörler olmak üzere 5 bölümden oluşur. 1 veya daha fazla olabilen tarak şeridi, bir giriş hunisi vasıtasıyla üç çift makaradan oluşan giriş kısmına beslenir. Bu üç çift makara, bir motor tarafından zincir ve dişliler vasıtası ile döndürüldüklerinden herhangi bir kayma olmaksızın düzenli besleme sağlanmıştır. Birinci çift makaradan sonra şeritler, bir yönlendirici çatal altından geçerler ve diğer makara çiftlerine doğru yol alırlar. Bu kısımda şeritlere toplam olarak 1.3 civarında çekim uygulanır. Besleme hızı 7.5 m/min kadar olabilir. Giriş kısmının 3. Çift makaraları, şeritleri hızla dönmekte olan açıcı silindirin (davulun) dişlerine besler. Silindir çapı 180 mm olup hızı 3000, 3500, 4000, 4500 r/min olabilir. Silindir vasıtasıyla taranan lifler, üst koruyucu altından çıktıktan sonra merkezkaç kuvvetinin etkisiyle silindir dişlerinden ayrılır ve üstten gelen hava akışının etkisiyle büküm verme elemanına ulaşır. Bu kısım aynı yönde dönen, üzerleri kafes gibi delikli olan iki silindirden oluşmaktadır. Birbirine paralel olan bu silindirlerin içinde hava emişi söz konusudur. Dolayısıyla bu kısma düşen lif, hava emişiyle oluşan basınç sayesinde çizgi üzerinde tutulur. Diğer taraftan silindirlerin dönüşü lif tutamını bu çizgiden uzaklaştırmaya çalışmaktadır. Bu nedenle yerinden oynayan tutam, hava basıncının etkisiyle yeniden geriye yuvarlanırken kendi çevresi boyunca dönerek bükülür. İplik görünümü alan bu tutam, silindirler boyunca çekilirken sürekli olarak açıcı silindirden gelen lifler, büküm işleminin sürekliliğini sağlar. Bir çift silindir vasıtasıyla büküm silindirlerini terk eden iplik bobin halinde sarılır. Bu silindir çiftine ve barabana hareket ayrı bir motor vasıtasıyla verilir. Sarma gerginliği istenilen şekilde ayarlanabilir. Büküm verilirken belirgin bir eksene kuvvet uygulanmadığından, eğirme sırasında iplik kopuşu çok düşüktür. İpliğe bir büküm vermek için ring sisteminde ortalama 600g’lık kops ve iği, rotor sisteminde 150g’lık bir rotoru bir kez çevirmek gerekir. Dref sisteminde ise bir büküm vermek için silindirlerin çok az dönüşü yeterlidir. Delikli silindirler içinden hava emişi ile büküm oluşturulurken lifler arasındaki tozlar, işlem boyunca büyük ölçüde ayrıştırılabilir 7. Şekil 6 da Dref 2‘nin şematik bir görünüşü verilmiştir.
Şekil 6. Dref 2 sisteminin şematik görünüşü 18
4.2.2. DREF 3 Eğirme Sisteminin Çalışma Prensibi
Dref 3 sisteminin çalışma prensibi (Şekil 7 ve 8) şu şekildedir : Sisteme elyaf bandı girer ve elyaf bir tarak veya penye silindirine yayılır. Bu silindirden hava ile alınarak friksiyon alanına sevk edilir. Aynı yönde dönen iki silindir veya tambur elyafı bir arada çeker ve ipliği oluşturur. Özellikle Dref eğirme prensibinde aynı yönde dönen iplik oluşturma silindirleri arasına bir iplik beslenerek açılmış liflerin bu iplik etrafına sarılmaları sağlanır. Bu şekilde özlü (çekirdekli) yapıda iplik elde edilir. Friksiyon silindirlerine giriş açısı elyafın tertibini etkiler. Açı ne kadar küçük olursa elyafın düzeltilmesi ve paralelliği o kadar iyi olur 8.
Şekil 7 : Dref 3 iplik eğirme sistemi I. çekim bölgesi
Şekil 8 : Dref 3 iplik eğirme sistemi II. çekim bölgesi
4.3.FRİKSİYON Eğirme Sisteminin Kullanım Alanları
4.3.1. DREF 2 İpliği Kullanım Alanları
Dref 2 sistemindeki iplikler : gündelik, yataklık ve seyahatlik battaniyeler, temizlik bezleri, yer bezleri, üst giyim kumaşları, halı altı dokular, elastiki eşofman iplikleri vb.
Jüt ve telef karışımları, kablo, halı ve yazlık ayakkabı tabanları imalatında kullanılır7.
4.3.2. DREF 3 İpliği Kullanım Alanları
Dref 3 sisteminde battaniye, halı, günlük giyim eşyaları, ev tekstilleri, dekorasyon amaçlı tekstiller, yüksek dayanım istemeyen teknik kumaşlar vb. mamullerin iplikleri, özel iplikler ve bir takım dolgu iplikleri olarak kullanılırlar 8.
5. SELF-TWİST (S.T.) EĞİRME SİSTEMİ
Self-Twist ticari adıyla Repco iplik eğirme sistemi : iki tane elyaf şeridinin ovalanarak geçici büküm kazandırılması ve bu bükülü şeritlerin birbirine bükülmesi yoluyla iplik üretimidir ( Şekil 9).
Son yıllarda kısa elyaftan iplik üretmek için bir çok yeni yöntem geliştirilmiştir. Üretim hızı, işçilik giderleri, genel giderler, gerekli yer miktarı ve enerji giderlerinde önemli tasarruflar sağladıklarından bu yeni yöntemler önemlidir. Bunlardan biri de Self-Twist yani kendi kendine bükülü iplik elde etme yöntemidir.
Bu yöntem bir yalancı büküm uygulamasıdır. Self-Twist eğirme sistemi, esas olarak çok ince kamgarn yün ipliği için düşünülmüştür. Bu sistemde kullanılan elyafın çok kısa olması gerekir.
Kendi kendine büküm, iki çeşit fitilin ovalanma ile kazandığı iç enerjisini kullanarak birbirine sarılmasından meydana gelir. Bir ana işlem ile kendi kendine büküm yapısı teşekkül eder. Burada elde edilen iplik bir ara mamul olabileceği gibi, dokumada veya örgüde iplik olarak ta kullanılır. Yalancı bükümlü iplikler, ancak katlı iplik gerektiren kumaşlarda kullanılabilir.
İplik eğirme sisteminde, bir çekim düzeneğine beslenen fitilden çıkan elyaf grubu, bir kaç şekilde yapılabilen yalancı büküm hareketine tabi tutulur. Yalancı büküm sisteminden çıkan iki grup birlikte bir rehber düzeninde birleştirilirler ve iki grupta bulunan büküm enerjisi, onların birbiri etrafına sarılmasına sebep olur. Bu sarılma hareketine kendinden bükülme denir. Oluşan iplikte “S-sıfır-Z-sıfır,, şeklinde bir “kendinden bükümlü,, yapı oluşur. Son olarak, oluşan kendinden bükümlü iplik silindirik bir bobine sarılır 9.
Şekil 9 : Repko eğirme makinesinin şematik görünüşü 10.
Bu tipte genel büküm sıfırdır. Bu nedenle mukavemeti düşüktür. Bu ipliğin kullanılmadan önce ilave büküm işleminden geçirilerek mukavemetinin arttırılması yaygındır (S.T.T. ipliği).
Bu sistemde üretim ring iplik sisteminin 10 misli kadardır. Maksimum iplik çıkış hızı 350 m / min kadardır.
Ticari olarak mevcut olan bir tip yalancı büküm makinesinin ticari ismi “Repco” olarak bilinmektedir. Sistemde iki ayrı fitil, her biri dönmekte ve titreşmekte olan bir çift silindir arasına beslenir. Bu silindirler ileri doğru ve yana doğru hareket ederken her silindir çifti üzerindeki fitili diğerinin tersi yönünde bükülür. Silindirlerin dengesiz hareketleri bükümlü ve bükümsüz bölümleri bulunan bir iplik oluşturur. Her biri ters yönde bükülmüş olan fitiller yan yana gelince birbiri etrafında bükülürler ve katlı iplik oluştururlar.
Her ipliğin gevşek bükümlü bölümünün aynı yere rastlamamasına özen gösterilmelidir aksi halde zayıf bir nokta oluşur 10.
5.1 - Yalancı Bükümlü İpliğin Kullanılmasının Avantajları
Yalancı bükümlü ipliğin avantajları şu şekilde sıralanabilir :
1 - Daha az yerde daha çok iplik üretilmesi,
2 - Yıllık bakım giderlerinin az olması,
3 - Daha az döküntü oluşması,
4 - Daha az enerji tüketimi,
5 - Daha az işçilik gideri 9.
5.2 - Büküm İşlemi ve Hazırlıkları
Çekim bölgesinde çekilen fitil büküm alanına girdiğinde S.T. rulenin ovalama yapması nedeni ile büküm almaktadır.
İşletmede 11 cm normal büküm, 3 cm boşluk, 11 cm ters büküm alarak işlemi tamamlayacaktır.
1 - Tüm fitil ipliklerinin en az % 1 yağlı madde içerdiğinden emin olunmalıdır. Çünkü daha az miktarlar kullanıldığında katkı maddesine bağlı olarak merdanelerde kirliliğe sebep olacaktır.
2 - Anti statik içeren emilsiyon yeterli miktarlarda karışımın içine uygulandığından emin olunmalıdır.
3 - Materyalın fitil uzunluk gerekliğine uyduğundan emin olunmalıdır.
4 - Eğer bükümlü fitil kullanılıyorsa tavsiye edilen max. hızın aşılmadığından emin olunmalıdır.
5 - Fitil üzerinde topak olup olmadığı kontrol edilmelidir. Çünkü bu topak bükümün seramik kılavuzlarını tıkayabilir 9.
5.3 - İplik Büküm Seçimleri
En uygun bükümün seçilmesinde yardım etmek için Self - Twıst iplikleri için bir kontrol graft, STT iplikleri içinde bir romograf sağlanmalıdır.
Self - Twıst iplikleri için kontrol graftlarının başlangıç noktası olarak kabul etmek gerekir. Ayrıca STT iplikler içinde romograf lar her yarım turda kullanılır. Bunlar minimum iplik büküm kullanılacak tarzda ipliklerdir. Yani uygun katlama ve büküm seviyesine ulaşmak için kolay bir metoddur.
Sarmal yapı içinde bükümlerin S’den Z’ye değişmelerinde az yada hiç büküm olmayan bölgeler olabilir. Bu gruplar potansiyel olarak zayıf noktalardır. Eğer bu iki sarmal yapı bir araya getirilirse bu zayıf potansiyelli bölgelerin karşılaşması sonucu Self - Twıst iplikte daha zayıf noktalar ortaya çıkacak ki bunlarda ilerde çok büyük sorunlar teşkil edeceklerdir. Bunun içinde birleştirici kılavuzlar mal edilmiştir. Aşağıda ( Şekil 10, 11 ve 12 de) büküm mekanizması gösterilmektedir 9.
5.4 - Çekim Bölgesi
Fitilin iplik haline gelebilmesi için çekim işleminin yapıldığı kısımdır. Giriş silindiri ile çıkış silindirinin farklı hızlarda dönmelerinden çekme işlemi yapabilmektedir.
Çekim dişlisi kutusu ya 1.625 inçlik yada 1.928 inçlik geri ve merkez çekim silindirleri kayış tahrik kasnağı iki çekim aralığıyla yerleştirilir. Kılavuzun bu bölümünde gösterilen çekim oranları her iki bobin için de geçerlidir.
1.78 - 45.3 kez ( 1.625 inçlik bobin kullanılıyor )
15 - 38 kez ( 1.928 inçlik bobin kullanılıyor ) 10.
İplik Eğirme Yöntemleri Hakkında Temel Bilgiler
60’lı yılların sonuna kadar hemen hemen bütün kesikli lif iplikleri Ring iplik makinelerinde üretilmekteydi ve Ring iplikçiliği kesikli lif ipliği üretimindeki tek evrensel yöntem olarak tanımlanıyordu. 70’li yılların başında üretime katılan Rotor iplik makineleri günden güne kendini yenilemiş ve son yıllarda da büyük bir üretim potansiyeli oluşturma durumuna gelmiştir. Ancak ince numaralardaki Rotor ipliklerinin üretiminde teknik ve ekonomik açıdan bir takım sorunlarla karşılaşılmaktadır. Son yıllarda Rotor devrinin bir hayli arttırılabilmesi ince ipliklerin üretiminde ekonomik olarak çalışabilme olanakları doğmuştur. Bu arada paralel liflerin etrafına filament ipliklerin sarıldığı sargılı eğirme yöntemi gelişmiştir. Fakat bu teknik ile daha çok kalın ipliklerin üretimi yapılabilmektedir. Daha sonraki yıllarda Hava-Jet ve Friksiyon eğirme teknikleri gelişmiştir. Hava-Jet ve Friksiyon eğirme makineleri çok yüksek üretim hızına sahiptir. Fakat iplik özellikleri ve maliyetler açısından kullanımları sınırlıdır.
Yeni eğirme yöntemlerinin kullanılması sonucunda üretilen iplikler bazı alanlarda çok başarılı olarak kullanılabilmelerine rağmen bazı alanlarda olumlu sonuçlar alınmamaktadır. Dokuma ve örme kumaşların nitelikleri bu iplikler kullanıldığında bir miktar farklılık göstermektedir.
Yeni eğirme yöntemlerinden günümüzde en çok kullanılan Rotor iplikçiliğinde makine ve materyal özelliklerinin iyi bir şekilde seçilmesi ile Ring iplikleri kadar iyi özelliklere sahip iplikler elde etmek mümkündür 1.
Tablo 1 : Eğirme tiplerine göre iplik üretim hızları 1.
Eğirme tipi İplik numarası (Ne) İplik üretim hızı (m/min)
Bilezikli Eğirme 3-98 25
Dref 2 0.18-15 280
Dref 3 3.5-18 300
Air-jet 15-59 120-130
PLY fiL 23.6-70 x 2 (tex) 150-250
1.2. İplik Eğirme Yöntemlerinde Hammadde Seçimi ve Önemi
Yeni iplik eğirme sistemlerinin Ring iplik eğirme sistemiyle karşılaştırılmaları sonucu ortaya çıkan teknoloji ve iplik özellikleri bakımından farkları olması nedeniyle eğirme performansının geliştirilmesi için uygun materyalin seçilmesi ve lif özelliklerinin etkilerinin iyi bilinmesi gerekir. Yeni iplikçilik yöntemlerinde kullanılacak hammaddelerin nitelikleri önemlidir. Arzu edilen kalitede bir iplik üretimi gerçekleştirebilmek için uygun nitelikte hammadde seçilmelidir 1.
1.2.1. Lif Parametreleri
Yeni eğirme sistemleri için üzerinde durulan lif özellikleri ve bunların önem sıraları Rotor, Hava-Jet ve Friksiyon eğirme sistemleri için aşağıda verilmiştir :
Tablo 2 : İplikçilik sistemlerinde lif parametrelerinin karşılaştırılması 1
Rotor Eğirme Hava-Jetli Eğirme Friksiyon Eğirme
Lif mukavemeti Lif inceliği Lif sürtünmesi
Lif inceliği Temizlik Lif mukavemeti
Lif uzunluğu ve üniformitesi Lif mukavemeti Lif inceliği
Temizlik Lif uzunluğu ve üniformitesi Lif uzunluğu ve üniformitesi
Lif sürtünmesi Temizlik
1.2.1.1. Mukavemet
Lif mukavemeti iplik mukavemetine doğrudan etki yapan bir faktördür. Sağlam lifler sağlam ipliklerin üretimini sağladığı gibi aynı zamanda yüksek hızlı eğirme ve dokumada kopuş seviyesinin kabul edilebilir bir düzeyde kalmasını da sağlarlar. Yapay lif üreticileri de yüksek mukavemete sahip liflerin üretimi konusunda hızla çalışmalarını ilerletmektedirler. Pamuk liflerinin mukavemetlerinin iki kat üzerine çıkan yapay lifler üretilebilmektedir 1.
Tablo 3: Lif mukavemetinin iplik mukavemetine etkisi (Ne22 pamuk ipliği, e:4.8)1
1.2.1.2. İncelik
Rotor eğirme, Hava-Jetli eğirme ve Friksiyon iplikçiliğinde lif inceliği hem eğirme sınırını ( eğrilebilecek en ince iplik) hem de prodüktivite ve kumaş tutumuna etki eden büküm seviyesini belirlemektedir. Ring iplik eğirmede ipliğe büküm belli bir gerginlik altında verilmektedir. Buna karşılık Rotor iplik eğirme tekniğinde ipliğe bükümün verildiği noktada gerginlik çok düşük düzeydedir. Bu nedenle Rotor eğirmede iplik kesitine giren lif sayısı, iplik çekim kuvvetine büküm aktarma noktasında hiçbir müdahale yapılmaması yüzünden çok önemlidir. Kesitinde ne kadar çok lif olursa büküm o kadar iyi aktarılır. Bu yüzden rotor eğirmede lif inceliği önemlidir. Düşük mikroner değerine sahip pamuk lifleri yetiştirilmesi iplik incelik limitlerinin genişletilmesi bakımından önemlidir. Ancak düşük mikroner değerine sahip pamukların yüksek oranda olgunlaşmamış lif içerebilecekleri göz önüne alınarak seçimin dikkatli yapılması gerekir. Çünkü olgun olmayan lifler çeşitli sorunlara yol açabilir.
Pamuğun mikroner değeri düştükçe başka bir deyişle lif inceldikçe iplik kesitinde yer alabilecek liflerin sayısı artmaktadır. Bu artışa bağlı olarak iplik mukavemetinde herhangi bir azalma olmaksızın iplik bükümü azaltılabilmektedir. Bükümün azaltılabilmesi de prodüktivitenin artması anlamına gelir. Düşük büküm miktarı prodüktiviteyi arttırmakla kalmayıp ipliğin yumuşak olmasını da sağlar. Bu birçok dokuma kumaş türünde ve örme kumaşların hepsinde aranılan bir özelliktir.
Yapay lif üreticileri ince liflerin önemini benimsemiş olup bu tür liflerin ticari olarak üretimlerine başlanmıştır. Çok ince lif denildiğinde numarası 1dtex’ten daha ince olan lifler akla gelir. Bu liflerin numaraları 0.4-0.9dtex arasında olup teknik olanaklar bakımından 0.1dtex’in altında liflerin de üretimi mümkündür. Ancak 0.1dtex’in altındaki lifler deriye benzer yüksek kaliteli kumaşların üretiminde kullanılır. Bugün polyester lif üretiminde 1.7dtex’ten 1.2-1.3dtex inceliğe kadar kayma eğilimi vardır. Bu da yaklaşık olarak 3 mikroner incelikteki pamuğa karşılık gelmektedir. Hatta 2.5 mikronere karşılık gelecek liflerin de üretimi söz konusudur. Yapay liflerin piyasa ihtiyaçlarına uygun olarak üretilmesi kolay olduğu için yeni teknolojilerde yapay liflerin daha büyük çapta kullanılabileceklerini söylemek mümkündür. Pamuk lif inceliğinin 2.5-3 mikroner olması bir hayli zordur. Mevcut koşullarda 3.5-3.7 mikroner değerler elde etmek mümkündür. Ancak pamuğun gelecek yıllarda yapay liflerle rekabet edebilmesi açısından türlerinin ihtiyaca uygun bir şekilde ıslah edilmesi bir zorunluluk olarak görülmektedir 1.
1.2.1.3. Uzunluk
En iyi sonuçları alabilmek için uygun lif inceliği ve mukavemetinin yanısıra liflerin uzunluklarının ortalama 1” civarında olması ve iyi bir üniformite oranı gerekmektedir. Çok kısa olan lifler iplik mukavemetini azaltmakta iplik düzgünsüzlüğünü (%U) ve hata sayısını arttırmakta, eğirme performansını düşürmektedir.
Bu nedenle kullanılacak materyalin lif uzunluk dağılışı ve özellikle kısa lif oranı bilinmelidir. Kalın ipliklerde lif uzunluğu iplik kalitesine daha az bir katkı yaparken ince numaralara gelindiğinde lif uzunluğunun önemi bir hayli artmaktadır. Bu arada önemli olan bir husus lif harmanı içinde yüksek oranda kısa liflerin bulunması halinde büküm miktarının arttırılmasının gerekebileceği ve dolayısıyla eğirme maliyetlerinde bir miktar yükselmenin meydana gelebileceğidir 1.
1.2.1.4.Temizlik
Pamuk içersine karışan daha fazla miktardaki yaprak, çekirdek ve kabuk parçacıkları vb. maddelerin temizlenmesi için ilave temizleme makineleri gerekli olabilmektedir. Bu işlem yapılmadığı takdirde, özellikle yüksek hızlarla çalışırken sık sık kopuşlar meydana gelmektedir ve bu nedenle maliyetler yükselir.
Hava-Jetli eğirme ve Friksiyon eğirme sistemlerinde makine randımanlarının iyi olması açısından mümkün olduğu kadar az yabancı madde içeren materyale gereksinim duyulur. Organik veya inorganik yapılı mikro tozların makine parçaları üzerinde aşındırıcı etkileri vardır. Özellikle yüksek hızla çalışan kısımlarda ve iplik yüzey baskılarının yüksek olduğu yerlerde elemanların ömürleri azalır. Aşınmış rotor, açma silindiri, iplik çekme kanalı gibi elemanlar da iplik kalitesinde düşmelere sebep olurlar. Materyal içindeki mikro tozların azaltılması eğirme elemanlarının ömürlerinin azaltılması açısından büyük önem taşımaktadır1.
1.2.1.5.Lif Parlaklığı
Parlaklık doğal ve yapay liflerin değerini arttırır. İpek, tiftik ve bazı parlak yünlerin değerinin her zaman yüksek oluşunda bu özelliğin büyük etkisi vardır.
Pamuklarda parlaklık çeşitli durumlara göre değişir. Parlak pamuklar ipeği andırır. İpeği andıran pamuklar iplikçiler tarafından tercih edilir. Bir pamukta parlaklık lif yüzeyine düşen ışığın çeşitli şekilde yansıması ile oluşur 1.
2.OPEN END-ROTOR EĞİRME SİSTEMİ
Açık uç eğirme prensibine dayanan bu eğirme sisteminde prensip olarak tek tek açılmış lifler, iplik oluşturmak üzere birikim yoluyla açık iplik ucuna bağlanmaktadır (Şekil 1 ve 2). Sistemin esası lif kütlesinin rotor hareketiyle taşınıp, açık uca aktarılması ve bükümlü iplik yapısının elde edilmesidir 2.
Open-end rotor iplikçilik sistemi öncelikle pamuk, viskon, polyester ve akrilik lifler kullanılmak üzere kalın iplik eldesine uygundur. Fakat her geçen gün de kullanılabilecek lif tipi sayısı artmakta ve eğrilebilecek iplik numara aralığı genişlemektedir. İplik üretimi çekim, büküm ve sarım proseslerini içeren bölümlerden oluşur 2.
Rotor iplik makinelerinde çalışma esnasında rotor içinde bir miktar vakum oluşturulur. Band makineye besleme silindirleriyle yavaş yavaş verilir. İğneli veya 🙂🙂🙂🙂lik tarak garnitürüne sahip açma silindiri ise gelen liflerin uçlarını tarar. Eğer lifler iyice açılmazlarsa, rotora sevk edildikten sonra kötü kaliteli iplik elde edilir. Makine imalatını gerçekleştiren firmalarca bazen açıcının yanına pislik (döküntü) temizleme kutusu da ilave edilir 1.
Açma silindiri ile rotor arasında yer alan lif iletim kanalı hava akışını arttırıp lifleri bir ölçüde yönlendirip, düzeltir. İdeal olarak istenen liflerin iletim kanalı içinde ve ucuna değecek şekilde sıralar halinde rotora girmeleridir.
Lifler rotora girerken, rotorun çevresel hızı havanın hızından yüksek olduğu için, lifler bir miktar çekilerek yönlendirilirler. Lifler rotor içindeki merkezkaç kuvvetinin etkisiyle rotor içersinde toplanan diğer lif tabakalarına katılırlar.
Mevcut olan bir iplik çıkış tüpünden içeri sokulur ve rotor içindeki hava döndüğünden iplik ucu da dönmeye başlar. Merkezkaç kuvveti de ipliği rotorun içersine doğru iterek lif tutamına değmesini sağlar. Bu gerçekleşir gerçekleşmez iplik çekilir ve üretim başlamış olur. İplik kolunun her dönüşü ipliğe çıkış tüpünde bir büküm verir ve verilen bükümün bir kısmı geriye iplik koluna akarak rotor yüzeyine kadar gider. Üretilen iplik bobin halinde sarılır 1.
Şekil 1 : rotor iplik eğirme makinesi 17.
Şekil 2 : Open-End iplik eğirmenin genel prensibi 17.
Rotor eğirme metodunun bilezikli eğirme metodundan en büyük farkı iplik eğrilirken elyafın beslenmesinin kesintili oluşudur. Beslemedeki bu kesinti elyafın her birisini diğerinden ayırmak suretiyle, birbirleriyle temas halinde bile olmamalarını sağlayacak şekilde belirli bir bölgede elyafın çok yüksek bir hızla hareket etmesini sağlayarak elde etmektir. Böylece iplik ucunu döndürerek, ipliğe gerçek bir büküm vermek mümkün olmaktadır ki bu da bir masurayı döndürürken tüketilen enerji miktarından çok daha az enerji tüketimine ihtiyaç olmasını sağlamaktadır. Rotorun her devri iplikte bir devir meydana getirmektedir. Böylece 60 000-100 000 r/min rotor hızları ile çalışabilmekte ve yüksek verim hızlarına çıkılabilmektedir. Ayrıca elyaf beslemek için cer şeritleri kullanılabilmekte ve iplik büyük çaplı bobinlere doğrudan doğruya sarıldığından, normal koşullarda tekrar sarılmaya gerek olmamaktadır. Rotor iplik eğirme kaba iplik üretiminde daha ekonomik olmakla birlikte 20tex’e kadar olan ince numaralarda da bilezikli iplik eğirme metodundan daha ekonomiktir. Diğer yandan rotor iplik eğirmenin ana prensibi olan elyafın serbestçe uçuşmakta olması, elyafın oryantasyonunun korunması ve kontrol edilmesini çok zorlaştırmaktadır. Bu sırada elyaf büyük oranda oryantasyonunu kaybetmektedir. Rotora girdikleri zaman bu kayıp bir miktar düzelmekle birlikte, rotor ipliklerindeki elyaf oryantasyonu hiçbir zaman bilezikli sistemle üretilen iplikler kadar iyi değildir 3.
2.1.OPEN END-ROTOR İpliklerinin Genel Özellikleri
Open-end rotor iplikleri ile ring iplikleri arasında birçok farklılıklar vardır. ring iplikleri ile karşılaştırıldıkları zaman, Open-end rotor iplikleri bazı özelliklerinin daha iyi olmasına rağmen bazı özelliklerinin ise kötü olduğu görülmektedir.
Open-end rotor ipliği bir iç çekirdek ve bir dış tabakadan meydana gelmiştir. “Sarılmış lifler” denilen kısım, dış tabakada bulunup çekirdeği çevresi boyunca sararlar ve ring ipliği ile Open-end rotor iplik özellikleri arasında görülen ana farklılıklara sebep olurlar. Bunlar kısaca şu şekildedir :
Open - end iplik mukavemeti ring iplik mukavemetinden daha düşüktür. Genel olarak Open-end rotor ipliklerinin mukavemeti bunlara eşdeğer ring ipliklerinin %30-40’ı kadardır. Diğer yandan Open-end rotor iplikleri %10 daha yüksek kopma uzamasına sahiptirler. Open-end rotor ipliklerinin düzgünlüğü rotor içindeki dublaj nedeniyle ring ipliklerinden %10-20 daha iyidir. Ancak ön iplikhanede işlemlerin kısaltılmış olması nedeniyle bu ipliklerde orta ve kısa aralıklı düzgünsüzlüklere rastlanabilir.
Open-end rotor ipliklerinde tüylenme, ring ipliğine göre %20-40 daha azdır. Tutum açısından Open-end rotor iplikleri ring ipliklerine göre daha serttir.
Open-end rotor iplikleriyle yapılan sürtünme testleri, bu ipliklerin karde ring ipliklerine nazaran daha yüksek aşınma dayanımına sahip olduğunu göstermiştir. Open-end rotor iplikleri, ring ipliklerinden daha düşük elastisite modülüne ve eğirme rijiditesine sahiptirler. Özgül hacmi ring ipliklerininkinden %10 civarında daha büyüktür. Bu özelliği ipliğin iyi bir kompakt yapısının olmaması ile açıklanabilir. Daha yüksek özgül hacim: daha iyi bir örtücülük, daha iyi ısı tutuculuk, daha çok boyarmadde ve haşıl alma imkanı sağlamaktadır 2.
3. HAVA-JETLİ (AİR-JET) EĞİRME SİSTEM
Hava-jet eğirme sistemi yeni sayılabilecek iplik üretim metotlarından birisidir. Japon Murata, Toyota ve Hawa gibi firmaların Hava-Jetli iplik eğirme makineleri ITMA’83 te ilgi çekmiş, çeşitli ülkeler tarafından benimsenerek günümüzde kullanılmaya başlanan yeni eğirme sistemi olarak karşımıza çıkmaya başlamıştır.
Hava-jeti ipliği ortada lif demetlerinden oluşan çekirdek kısım ile bu çekirdek kısmı saran liflerden oluşmuş iki katlı bir ipliktir. Temel olarak yalancı bükümlü oldukları söylenebilir 4.
3.1. HAVA-JETLİ İplik Eğirme Sisteminde Kullanılan Lifler
Hava-jet iplikçilik sistemi, 120-150 mm uzunluktaki elyaftan iplik yapılabilen bir sistem olup, iyi özellikte pamuk ve sentetik elyaf ile orta ve ince iplik üretimlerinde uygundur. İçinde yüksek oranda kısa elyaf bulunan karde ipliklerini ve çok ince iplikleri üretmeye uygun olmayıp bu alanda kullanılmamaktadır. Bu sistemle elde edilen ipliklerin numara aralığı (Ne15-60) ring iplik sistemininki kadar geniş değildir 4.
Hava-jet eğirme sisteminde %100 sentetik lifler, sentetik lif karışımları veya sentetik liflerin pamukla olan karışımları kullanılır. Orta uzunluktaki liflerden iplik üretimi söz konusudur. İplik kesitindeki lif adedi minimum 80’dir 5. Hava-jetin de kullanılacak liflerin en az 38mm olması tavsiye edilmektedir zira daha kısa lifler hava akımı şiddeti nedeniyle kontrol edilememektedir 5.
İyi bir Hava-jeti ipliğinde lif işlenebilirliği, lif sürtünmesi ve lif temizliği büyük önem taşır. Hava-jeti yönteminde kullanılan liflerin en önemli özelliği mukavemetli olmalarıdır. Lif mukavemeti iplik mukavemetine etki ettiğinden liflerin mukavemetinin belli bir dereceden az olmaması gerekir.
Hava-jeti ipliğinde, iyi bir lif sargısının oluşabilmesi için iyi bir incelik ve uzunluk homojenliğinin olması gerekir. Pamuk lifiyle çalışmak oldukça zordur. Ancak belirli ştapelde taranmış penye pamuğu ile çalışmak mümkün olmaktadır. %100 polyester, %100 akrilik, % 100 viskon, akrilik/pamuk, ve polyester/viskon lifleri sistemde rahatlıkla işlenebilmektedir. Bunların yanında uzun ştapelde çalışmak üzere geliştirilmiş hava-jetli makinelerde yün ve uzun ştapelli yapay lifleri de işlemek mümkündür 5.
3.2.HAVA-JETLİ İplik Eğirme Sisteminin Çalışma Prensibi
Beslenen cer bandı veya genel olarak bant kalitesinin her zaman için yüksek olması gerekir. Bunun nedeni hava-jetli sistemde kullanılan yüksek çekim hızıdır.
İyi kalitede bir hava-jet ipliği üç pasaj cer kullanımı ve en az %25 Uster düzgünsüzlüğündeki bant girişi ile sağlanır. Karışım ipliklerinin hazırlanmasında penye makinesi kullanılması tavsiye edilmektedir. Hava-jetli sistemde flayer, ring ve otomatik bobin işlemleri elimine edilmiş, iplik eldesi basitleştirilmiştir.
Şekil 4 te görüldüğü gibi makineye lifler bant formunda ve kovadan beslenir. Kovalar makine arkasında yanyana bulunmaktadır. Kovadan alınan bantlar apronlu bir çekim sahasında inceltildikten sonra iplik oluşumunun sağlandığı jetlere verilir. Jetlerde sürekli sağlanan hava akımı ile lifler döndürülmektedir. Oluşan iplik, çıkış silindirleri ile alınmakta, iplik temizleyicisinin önünden geçerek bobinlenmektedir. İplik temizleyicisi, iplikteki kalın yerleri çıkararak ipliği temizlemekte ve otomatik düğümleme aparatı ile iplik düğümlenmektedir 5.
Hava-jetli eğirme sisteminde MJS sisteminde olduğu gibi bir iş akışı sözkonusudur (Şekil 3).
HARMAN - HALLAÇ
TARAK
CER I
CER II
CER III
MURATA JET SİSTEM
BOBİN FORMUNDA ÇIKIŞ
Şekil 3: MJS sistemi akış şeması 5.
1-Kova
2-Şerit
3-Birinci jet
4-İkinci jet
7-Emme ünitesi
8- İplik temizleme ünitesi
9-Gerdirici
10-Bobin
Şekil 4 : Hava-Jet sisteminde iplik oluşumu 5.
3.3.HAVA-JETLİ İplik Eğirme Makinesinin Üretim Özellikleri
Diğer iplik üretim sistemlerinde mekanik olarak hareket ettirilen iğ, kopça, rotor, friksiyon silindiri vb. kütleler vardır. Bu sebeple devir sayıları, sevk hızları ve buna bağlı olarak sistemlerin prodüktivitesi sınırlıdır. Buna karşın hava-jetli sistemde bunların yerine yüksek hızda (ses hızına yaklaşan hızlarda ) hava akımı vardır. Buradan şu çıkmaktadır; bu tarzda büküm verme elemanları ile çok yüksek verim alınabilmektedir. Sadece genel bir ölçü vermek amacıyla ipliğin hava-jeti içinde 150 000- 200 000r/min hız ile dönmekte olduğu ifade edilebilir. İplik inceliğine, iplik bükümüne vb. gibi faktörlere bağlı olarak bu devir 100-200 m/min’lık bir iplik çıkış hızına karşılık gelmektedir. Bu oran ring iplik eğirme sistemi ile karşılaştırıldığında yaklaşık 10/1 oranı elde edilir. Basınçlı hava elde etmek hiçbir zaman ucuz olmamakla beraber bu sistemde özellikle ince iplikler kullanılır.
Hava-Jetli iplik üretim giderleri, ring ipliklerinden önemli derecede düşüktür. Hava-Jetli iplik eğirme yönteminin sınırları belli bir limit içindedir. İplikler yapay liflerden veya pamuk ile yapay lif karışımlarından üretilebilir. Fakat pamuk oranı %50’yi geçmemelidir. %100 pamuk yalnızca laboratuar şartlarında işlenebilmektedir. Bununla birlikte yüksek kaliteli lifler kullanılmalıdır 5.
3.4.HAVA-JETLİ Eğirme Sisteminin Avantajları
Hava-jetli iplik eğirme sisteminin avantajları şu şekilde sınıflandırılabilir:
-Yapay ve sentetik liflerde mukavemet artışı
-Enerji azalması
-İşçilik ve insan gücünün azalması
-Yer probleminin ortadan kalkması
-Maliyetin daha düşük olması 5
3.5.HAVA-JETLİ İplik Eğirme Yönteminde Elde Edilen İplik Özellikleri
Hava-jet ipliği, ring ipliğinden oldukça farklı bir yapıya sahiptir ( Şekil 5). İplik açık bir konumda son şeklini aldığı için, bütün lifler paralel değildir. Düzgün bir büküm işlemi yapılmadığı için büküm sayısı ring ipliğinde olduğu gibi isteğe göre seçilemez.
Büküm sayısı bir hayli yüksek olan hava-jetli ipliklerde doğru büküm tespiti için büküm açma ve ter yönde bükme metodu kullanılmalıdır. Birçok özellikleri, örneğin %CV, tüylenme ve kalın yerleri ring ipliğinden daha iyidir. İplik mukavemeti ring ipliğine nazaran %10-20 kadar düşük olmasına rağmen hava-jet ipliklerinde daha az zayıf noktalar vardır. Bu nedenle de dokuma sırasında daha yüksek randıman elde edilir 6.
Şekil 5 : Hava jetli eğirme yönteminde elde edilen iplik görünümü
3.6. HAVA-JETLİ Sistemde Elde Edilen İpliklerin Kullanım Alanları
Bu sistemde üretilen iplikler : dimi, saten, poplin, basmalık, iş elbiseliği, yatak çarşafı, T-shirtler, ceketlik kumaşlar vb. yapımında kullanılır. Hava-Jeti ipliklerinin, üretilen kumaşa verdikleri özellikler şöyledir :
İpliğin düzgünlüğü, poplin ve saten kumaşa daha düzgün bir görünüm verir.
Oxford gömlekleri gibi çözgü ve atkıda bir kayma veya esneme olmadığından, dokusu gevşek olan dokumalara daha uygun olmaktadır.
Pardösülük gibi çok sıkı dokunmuş kumaşlarda kullanıldığında iyi bir hava geçirgenliği sağlar ve böylelikle kullananın terlemesine engel olur.
Hava-Jetli ipliklerin serbest haldeyken kendi üzerinde bükülme eğiliminin az olması, örgü mamullerde rahatlıkla kullanılmasını sağlar. İpliklerin boncuklanma (pilling ) özellikleri de çok azdır. Böylece örgü yüzeylerde sorun çıkaran boncuklanma ortadan kalkmıştır.
Hava-Jet ipliği, yıkanmaya ve kullanmaya karşı çok iyi bir dayanım gösterir. Çift katlı olarak yapıldığında endüstriyel mamullerde dikiş ipliği olarak ta kullanılabilir 6.
4. FRİKSİYON İPLİK EĞİRME SİSTEMİ
Bu sistem, Dr. Ernst Fehrer / Avusturya firması tarafından geliştirilmiştir ve bu ismin kısaltması olan “Dref ,, ismi ile anılmaktadır.
Bu gün Dref sisteminde yaygın olarak iki imalat tipi mevcuttur; bunlar Dref 2 veDref3 tür. 166-4000 tex arasındaki kaba numaralara hitap eden Dref 2 sistemi 1973 yılında ve 33-150 tex kalınlıktaki ipliklerin imaline uygun, Dref 3sistemi ise 1978 yılında geliştirilmiştir7.
4.1. FRİKSİYON Eğirme Sisteminde Kullanılan Lifler
4.1.1. DREF 2 Sisteminde Kullanılan Lifler
Bütün sentetik lifler, poliakril, poliester, polipropilen, viskon vb. lifler kullanılır. Bu liflerin inceliği 1.7-17 dtex arasındadır.
Özel lifler : Aramid, poliakrilonitril, polivinilasetat, polivinilklorid, karbon, cam lifleri ve bunların karışımları;
Her tip telef, ıskarta pamuk, kalite dışı yün;
🙂🙂🙂🙂lik liflerden bükülmüş iplikler de ayrıca kullanılmaktadır 7.
4.1.2. DREF 3 Sisteminde Kullanılan Lifler
A-Çekirdek Kısmı İçin (Lif ve Filament Besleme)
Sentetik lifler (Polyester, Poliamid, Polipropilen, Viskon vb.)
Özel lifler (Aramid, Nomex)
Sentetik/Pamuk karışımları
🙂🙂🙂🙂l, Lastik vb.
B-Manto Kısmı İçin (Kesikli Elyaf)
Taranmış temiz pamuk
Çekirdek için kullanılan sentetik ve özel lifler (elyaf inceliği 0.6-3.3 dtex arası, standart elyaf uzunluğu ise 32-60mm dir) 8.
4.2.FRİKSİYON Eğirme Sisteminin Çalışma Prensibi
4.2.1. DREF 2 Eğirme Sisteminin Çalışma Prensibi
Dref 2 sistemi endüstride pek çok alanda kullanılmaktadır. Bu makinelerin her biri 6 eğirme ünitesinden oluşan, en fazla 8 kısım halinde imal edilmektedir (Şekil 6). Eğirme ünitesi giriş kısmı, açıcı silindir, büküm verme elemanları, iplik sarma kısmı ve vantilatörler olmak üzere 5 bölümden oluşur. 1 veya daha fazla olabilen tarak şeridi, bir giriş hunisi vasıtasıyla üç çift makaradan oluşan giriş kısmına beslenir. Bu üç çift makara, bir motor tarafından zincir ve dişliler vasıtası ile döndürüldüklerinden herhangi bir kayma olmaksızın düzenli besleme sağlanmıştır. Birinci çift makaradan sonra şeritler, bir yönlendirici çatal altından geçerler ve diğer makara çiftlerine doğru yol alırlar. Bu kısımda şeritlere toplam olarak 1.3 civarında çekim uygulanır. Besleme hızı 7.5 m/min kadar olabilir. Giriş kısmının 3. Çift makaraları, şeritleri hızla dönmekte olan açıcı silindirin (davulun) dişlerine besler. Silindir çapı 180 mm olup hızı 3000, 3500, 4000, 4500 r/min olabilir. Silindir vasıtasıyla taranan lifler, üst koruyucu altından çıktıktan sonra merkezkaç kuvvetinin etkisiyle silindir dişlerinden ayrılır ve üstten gelen hava akışının etkisiyle büküm verme elemanına ulaşır. Bu kısım aynı yönde dönen, üzerleri kafes gibi delikli olan iki silindirden oluşmaktadır. Birbirine paralel olan bu silindirlerin içinde hava emişi söz konusudur. Dolayısıyla bu kısma düşen lif, hava emişiyle oluşan basınç sayesinde çizgi üzerinde tutulur. Diğer taraftan silindirlerin dönüşü lif tutamını bu çizgiden uzaklaştırmaya çalışmaktadır. Bu nedenle yerinden oynayan tutam, hava basıncının etkisiyle yeniden geriye yuvarlanırken kendi çevresi boyunca dönerek bükülür. İplik görünümü alan bu tutam, silindirler boyunca çekilirken sürekli olarak açıcı silindirden gelen lifler, büküm işleminin sürekliliğini sağlar. Bir çift silindir vasıtasıyla büküm silindirlerini terk eden iplik bobin halinde sarılır. Bu silindir çiftine ve barabana hareket ayrı bir motor vasıtasıyla verilir. Sarma gerginliği istenilen şekilde ayarlanabilir. Büküm verilirken belirgin bir eksene kuvvet uygulanmadığından, eğirme sırasında iplik kopuşu çok düşüktür. İpliğe bir büküm vermek için ring sisteminde ortalama 600g’lık kops ve iği, rotor sisteminde 150g’lık bir rotoru bir kez çevirmek gerekir. Dref sisteminde ise bir büküm vermek için silindirlerin çok az dönüşü yeterlidir. Delikli silindirler içinden hava emişi ile büküm oluşturulurken lifler arasındaki tozlar, işlem boyunca büyük ölçüde ayrıştırılabilir 7. Şekil 6 da Dref 2‘nin şematik bir görünüşü verilmiştir.
Şekil 6. Dref 2 sisteminin şematik görünüşü 18
4.2.2. DREF 3 Eğirme Sisteminin Çalışma Prensibi
Dref 3 sisteminin çalışma prensibi (Şekil 7 ve 8) şu şekildedir : Sisteme elyaf bandı girer ve elyaf bir tarak veya penye silindirine yayılır. Bu silindirden hava ile alınarak friksiyon alanına sevk edilir. Aynı yönde dönen iki silindir veya tambur elyafı bir arada çeker ve ipliği oluşturur. Özellikle Dref eğirme prensibinde aynı yönde dönen iplik oluşturma silindirleri arasına bir iplik beslenerek açılmış liflerin bu iplik etrafına sarılmaları sağlanır. Bu şekilde özlü (çekirdekli) yapıda iplik elde edilir. Friksiyon silindirlerine giriş açısı elyafın tertibini etkiler. Açı ne kadar küçük olursa elyafın düzeltilmesi ve paralelliği o kadar iyi olur 8.
Şekil 7 : Dref 3 iplik eğirme sistemi I. çekim bölgesi
Şekil 8 : Dref 3 iplik eğirme sistemi II. çekim bölgesi
4.3.FRİKSİYON Eğirme Sisteminin Kullanım Alanları
4.3.1. DREF 2 İpliği Kullanım Alanları
Dref 2 sistemindeki iplikler : gündelik, yataklık ve seyahatlik battaniyeler, temizlik bezleri, yer bezleri, üst giyim kumaşları, halı altı dokular, elastiki eşofman iplikleri vb.
Jüt ve telef karışımları, kablo, halı ve yazlık ayakkabı tabanları imalatında kullanılır7.
4.3.2. DREF 3 İpliği Kullanım Alanları
Dref 3 sisteminde battaniye, halı, günlük giyim eşyaları, ev tekstilleri, dekorasyon amaçlı tekstiller, yüksek dayanım istemeyen teknik kumaşlar vb. mamullerin iplikleri, özel iplikler ve bir takım dolgu iplikleri olarak kullanılırlar 8.
5. SELF-TWİST (S.T.) EĞİRME SİSTEMİ
Self-Twist ticari adıyla Repco iplik eğirme sistemi : iki tane elyaf şeridinin ovalanarak geçici büküm kazandırılması ve bu bükülü şeritlerin birbirine bükülmesi yoluyla iplik üretimidir ( Şekil 9).
Son yıllarda kısa elyaftan iplik üretmek için bir çok yeni yöntem geliştirilmiştir. Üretim hızı, işçilik giderleri, genel giderler, gerekli yer miktarı ve enerji giderlerinde önemli tasarruflar sağladıklarından bu yeni yöntemler önemlidir. Bunlardan biri de Self-Twist yani kendi kendine bükülü iplik elde etme yöntemidir.
Bu yöntem bir yalancı büküm uygulamasıdır. Self-Twist eğirme sistemi, esas olarak çok ince kamgarn yün ipliği için düşünülmüştür. Bu sistemde kullanılan elyafın çok kısa olması gerekir.
Kendi kendine büküm, iki çeşit fitilin ovalanma ile kazandığı iç enerjisini kullanarak birbirine sarılmasından meydana gelir. Bir ana işlem ile kendi kendine büküm yapısı teşekkül eder. Burada elde edilen iplik bir ara mamul olabileceği gibi, dokumada veya örgüde iplik olarak ta kullanılır. Yalancı bükümlü iplikler, ancak katlı iplik gerektiren kumaşlarda kullanılabilir.
İplik eğirme sisteminde, bir çekim düzeneğine beslenen fitilden çıkan elyaf grubu, bir kaç şekilde yapılabilen yalancı büküm hareketine tabi tutulur. Yalancı büküm sisteminden çıkan iki grup birlikte bir rehber düzeninde birleştirilirler ve iki grupta bulunan büküm enerjisi, onların birbiri etrafına sarılmasına sebep olur. Bu sarılma hareketine kendinden bükülme denir. Oluşan iplikte “S-sıfır-Z-sıfır,, şeklinde bir “kendinden bükümlü,, yapı oluşur. Son olarak, oluşan kendinden bükümlü iplik silindirik bir bobine sarılır 9.
Şekil 9 : Repko eğirme makinesinin şematik görünüşü 10.
Bu tipte genel büküm sıfırdır. Bu nedenle mukavemeti düşüktür. Bu ipliğin kullanılmadan önce ilave büküm işleminden geçirilerek mukavemetinin arttırılması yaygındır (S.T.T. ipliği).
Bu sistemde üretim ring iplik sisteminin 10 misli kadardır. Maksimum iplik çıkış hızı 350 m / min kadardır.
Ticari olarak mevcut olan bir tip yalancı büküm makinesinin ticari ismi “Repco” olarak bilinmektedir. Sistemde iki ayrı fitil, her biri dönmekte ve titreşmekte olan bir çift silindir arasına beslenir. Bu silindirler ileri doğru ve yana doğru hareket ederken her silindir çifti üzerindeki fitili diğerinin tersi yönünde bükülür. Silindirlerin dengesiz hareketleri bükümlü ve bükümsüz bölümleri bulunan bir iplik oluşturur. Her biri ters yönde bükülmüş olan fitiller yan yana gelince birbiri etrafında bükülürler ve katlı iplik oluştururlar.
Her ipliğin gevşek bükümlü bölümünün aynı yere rastlamamasına özen gösterilmelidir aksi halde zayıf bir nokta oluşur 10.
5.1 - Yalancı Bükümlü İpliğin Kullanılmasının Avantajları
Yalancı bükümlü ipliğin avantajları şu şekilde sıralanabilir :
1 - Daha az yerde daha çok iplik üretilmesi,
2 - Yıllık bakım giderlerinin az olması,
3 - Daha az döküntü oluşması,
4 - Daha az enerji tüketimi,
5 - Daha az işçilik gideri 9.
5.2 - Büküm İşlemi ve Hazırlıkları
Çekim bölgesinde çekilen fitil büküm alanına girdiğinde S.T. rulenin ovalama yapması nedeni ile büküm almaktadır.
İşletmede 11 cm normal büküm, 3 cm boşluk, 11 cm ters büküm alarak işlemi tamamlayacaktır.
1 - Tüm fitil ipliklerinin en az % 1 yağlı madde içerdiğinden emin olunmalıdır. Çünkü daha az miktarlar kullanıldığında katkı maddesine bağlı olarak merdanelerde kirliliğe sebep olacaktır.
2 - Anti statik içeren emilsiyon yeterli miktarlarda karışımın içine uygulandığından emin olunmalıdır.
3 - Materyalın fitil uzunluk gerekliğine uyduğundan emin olunmalıdır.
4 - Eğer bükümlü fitil kullanılıyorsa tavsiye edilen max. hızın aşılmadığından emin olunmalıdır.
5 - Fitil üzerinde topak olup olmadığı kontrol edilmelidir. Çünkü bu topak bükümün seramik kılavuzlarını tıkayabilir 9.
5.3 - İplik Büküm Seçimleri
En uygun bükümün seçilmesinde yardım etmek için Self - Twıst iplikleri için bir kontrol graft, STT iplikleri içinde bir romograf sağlanmalıdır.
Self - Twıst iplikleri için kontrol graftlarının başlangıç noktası olarak kabul etmek gerekir. Ayrıca STT iplikler içinde romograf lar her yarım turda kullanılır. Bunlar minimum iplik büküm kullanılacak tarzda ipliklerdir. Yani uygun katlama ve büküm seviyesine ulaşmak için kolay bir metoddur.
Sarmal yapı içinde bükümlerin S’den Z’ye değişmelerinde az yada hiç büküm olmayan bölgeler olabilir. Bu gruplar potansiyel olarak zayıf noktalardır. Eğer bu iki sarmal yapı bir araya getirilirse bu zayıf potansiyelli bölgelerin karşılaşması sonucu Self - Twıst iplikte daha zayıf noktalar ortaya çıkacak ki bunlarda ilerde çok büyük sorunlar teşkil edeceklerdir. Bunun içinde birleştirici kılavuzlar mal edilmiştir. Aşağıda ( Şekil 10, 11 ve 12 de) büküm mekanizması gösterilmektedir 9.
5.4 - Çekim Bölgesi
Fitilin iplik haline gelebilmesi için çekim işleminin yapıldığı kısımdır. Giriş silindiri ile çıkış silindirinin farklı hızlarda dönmelerinden çekme işlemi yapabilmektedir.
Çekim dişlisi kutusu ya 1.625 inçlik yada 1.928 inçlik geri ve merkez çekim silindirleri kayış tahrik kasnağı iki çekim aralığıyla yerleştirilir. Kılavuzun bu bölümünde gösterilen çekim oranları her iki bobin için de geçerlidir.
1.78 - 45.3 kez ( 1.625 inçlik bobin kullanılıyor )
15 - 38 kez ( 1.928 inçlik bobin kullanılıyor ) 10.